

### Residential Furnaces and Boilers

### ENGINEERING ANALYSIS

### Mark Kendall

(kendall.mark@adlittle.com)
Arthur D. Little, Inc.

U.S. DOE Workshop on Standards for Residential Furnaces and Boilers July 17, 2001



## **Engineering Analysis Overview**

The Engineering Analysis defines the relationship between equipment cost and equipment efficiency for use in downstream analyses.





## **Engineering Analysis Characteristics**

### DOE desires that the cost/efficiency relationships used in the analysis possess certain characteristics.

- Credible
  - based on acceptable estimation techniques
  - incorporates and reconciles available data from multiple sources
- Transparent
  - publicly accessible
  - protects proprietary information
- Specific
  - sufficient detail to reduce ambiguity or misinterpretation
  - a single set of cost-efficiency estimates
  - quantified uncertainties
- Timely
  - available prior to scheduled deadlines



# **Engineering Analysis Sources of Efficiency Data**

There are several potential sources of efficiency/performance information, when applied to residential furnaces and boilers.

### **Primary advantage ... disadvantage**

|                             | ,                                 | 9                                                           |          |
|-----------------------------|-----------------------------------|-------------------------------------------------------------|----------|
| Manufacturers and Suppliers | Direct source of performance data | Detailed data is often the most sensitive                   |          |
| Testing/Rating              | Objective and accessible          | Products are concentrated near only a few efficiency levels |          |
| Technical Literature        | Freely available                  | Inconsisent topical coverage                                | <b>✓</b> |
| Engineering Estimates       | Efficient                         | Scope depends on personnel availability                     | <b>✓</b> |
| Simulation Modeling         | Flexible                          | Limited software availability                               | <b>✓</b> |
| Prototyping                 | Direct observation                | Resource intensive                                          | <b>✓</b> |



Can provide direct insight into performance of future equipment under more stringent standards



# **Engineering Analysis Sources of Manufacturing Cost Data**

Similarly, there are several potential sources of manufacturing cost data each with advantages and disadvantages.

### Primary advantage ... disadvantage

Detailed data is often

Highly aggregated

Direct source of cost

|                                              | and market info                     | sensitive                                                  | •        |
|----------------------------------------------|-------------------------------------|------------------------------------------------------------|----------|
| Teardown Analysis/<br>Engineering Evaluation | Direct product observation          | Products concentrated near only a few efficiency levels    | <b>✓</b> |
| List Prices                                  | Readily accessible wholesale prices | Indicates overall value,<br>not efficiency-related<br>cost |          |

Freely available



Can provide direct insight into future costs under more stringent standards

Manufacturers and Suppliers

Public Data (e.g. Census)



# **Engineering Analysis Proposed Approach**

Based on the Department's past experience using approaches such as the Design Option and Efficiency Level approach, we propose to combine data sources for this rulemaking.

- Gather publicly available information
- Select representative sample of products for analysis
- Work with manufacturers to identify appropriate samples for teardown and to obtain design data for additional samples
- Conduct computer simulations and engineering estimates to supplement the teardown analysis
- Obtain reviews by stakeholders
- Reconcile results and characterize uncertainty

Based on their advantages and disadvantages, are all these steps necessary, or are others warranted?



# **Engineering Analysis Questions Related to Proposed Approach**

Depending on which approach we take, there are some questions to be answered.

- What role should manufacturers and other stakeholders have in providing data and reviewing assumptions, methods and results?
- How many teardowns should be conducted? Of which models?
- What simulation models or engineering estimates should be used?
  - FURNACE
  - condensing furnaces (e.g., CONDHX)
  - boilers
- If we draw on multiple sources of information, what guidelines should we use for reconciling them and integrating them into a single set of cost-efficiency data?